
RTSA HTTP Stream Server Endpoints
Features and Purpose
The http stream server (and client) block are used to stream measurement and detection data from and

to the RTSA suite. It is also used to control and monitor the streaming. The protocol uses http as the

underlying transport protocol and the REST paradigm for the API.

Block Graph
An HTTP server block in the block graph of the RTSA suite provides the access. More than one HTTP

server blocks may be present in one graph, but will have to use different ports for their listening socket.

The data streamed will depend on the graph used in the RTSA suite.

A power spectrum block provides flexible spectrum data.

Including a demodulation block allows fine grained control of the spectrum range and sample rate down

to the sub hertz frequencies.

A sweep block on the other hand extends the frequency range beyond the realtime span of the capture

device.

Reducing the number of spectra by a condition block:

Authorization
The server supports two types of HTTP authorization, “Basic” with username and password and

“RToken” with the user specific token, returned by the “user” endpoint for the current user itself.

Stream Format
The stream server supports three main data types for streaming data – the RTSA file format, JSON and a

combined JSON and binary format. External applications will most likely use JSON or raw. The stream is

split into packets comprising meta data and an array of samples.

Not all fields are present for all media types. The start and end time as well as the payload type are

always present.

startTime Start time of the packet in seconds since the start
of the unix epoch.

endTime End time of the packet in seconds since the start
of the unix epoch.

unit Unit of the sample values

payload Payload type of the packet

minPower Minimum power in dBm

maxPower Maximum power in dBm

startFrequency Start of a frequency range

endFrequency End of a frequency range

sampleDepth Number of sample sets per sample, e.g. bins in a
histogram

sampleSize Sample size, e.g. individual frequency bins in a
spectrum or channels in an audio stream

samples Array of actual sample data

antenna Antenna specification

categories Category specification

scale Scale factor used for integer data when using a
16bit mixed JSON raw format

Spectrum Data
Spectrum data packets will look like this:

{

 "startTime" : 1501163970.1396854,

 "endTime" : 1501163970.140799,

 "unit" : "dbm"

 "payload" : "spectra",

 "startFrequency" : 2400250000,

 "endFrequency" : 2487750000,

 "minPower" : -95,

 "maxPower" : 5,

 "antenna" : {

 "name" : "Block_IsoLOG_0"

 "latitude" : 50.13646697998047,

 "longitude" : 6.320250034332275,

 "azimuth" : -2.748893976211548,

 "declination" : 0,

 },

 "sampleDepth" : 1,

 "sampleSize" : 448,

 "samples" : [

 [-90.05, -90.05, ... , -81.01],

 ...

 [-81.65, -78.05, ... , -90.01]

],

}

IQ Data
IQ Samples are transmitted as a flat array of alternating I and Q values.

{

…

 "payload" : "iq",

 "unit" : "generic"

 "minPower" : -2,

 "maxPower" : 2,

 "sampleDepth" : 1,

 "sampleSize" : 2,

 "samples": [

 5.12e-05, 0.00132,

 0.000885, 0.00124,

 0.000566, 0.000654,

 -0.000615, 2.35e-05,

 0.00042, -0.000276,

 -0.000723, -0.000343,

 -0.000672, 0.000195,

 0.000843, -0.000228,

 ...

]

}

Data that is captured from a source that is not calibrated will have a unit type of generic. The used value

range will be given by the min and max power values.

Histogram Data
Histogram data transfers percentages of bin usage. The sample size is like the spectrum or category

data, but the sample depth is used to separate the bins. The sample data is a 2D array with the

dimensions sample size and sample depth packed into a flat 1D JS array.

{

 "startTime" : 1506933004.0587604,

 "endTime" : 1506933004.0911448,

 "payload" : "histogram",

 "unit" : "percentage"

 "startFrequency" : 2402250128,

 "endFrequency" : 2489750128,

 "maxPower" : 5,

 "minPower" : -165,

 "sampleDepth" : 256,

 "sampleSize" : 896,

 "samples": [

 [0.074, 0.0787, ... 0.0893]

],

}

Channel power or other category data
The samples in a category ordered packet will have one measurement per category. The categories are

named and may cover an optional frequency range.

name Name of the category item

startFrequency Start of a frequency range

endFrequency End of a frequency range

{

…

 "categories" : [

 {

 "name" : "Wifi Channel 1",

 "startFrequency" : 2401000000

 "endFrequency" : 2423000000,

 },

 ...

],

…

}

Antenna Data
Data that was captured using an antenna with e.g. location or directional information will have an

antenna specification field in the packet.

name Name of the antenna

latitude Latitude of the antenna

longitude Longitude of the antenna

azimuth Azimuth of a directional antenna

declination Declination of a directional antenna

Data Endpoints

Single Samples
Polling single samples from the server block input is performed with the “/sample” endpoint. This can

easily be tried using a standard web browser http://localhost:54664/sample :

The result will contain one or no samples.

Receiving multiple samples can be achieved using the “/samples” endpoint. The number of samples can

be controlled with the “limit” argument e.g. http://localhost:54664/samples?limit=1000 will try to

capture 1000 samples or spectra. The result will be an array of sample objects.

The “input” argument may be used to select a different input than the “main”.

Stream Data
Another option is the use of streaming with a chunked transfer setting using the “/stream” endpoint.

The data is transmitted as line limited JSON. Each sample packet is encoded as individual JSON data

separated by a line feed (ASCII 10) and a record separator (ASCII 30) character.

The stream can be limited to a maximum number of samples using the limit argument:

http://localhost:54664/stream?format=json

Additional optional arguments are “rate_reduction=n” to reduce the number of samples transmitted by

a factor of n. Automatic rate adaption can be disabled by using “rate_adaption=0”.

The “input” argument may be used to select a different input than the “main”.

http://localhost:54664/sample
http://localhost:54664/samples?limit=1000
http://localhost:54664/stream?format=json

Alternative Inputs
Some connectors provide more than one stream. The “input” argument of the sample and stream

endpoint is used to select this stream. The “inputs” endpoint returns an array of available inputs.

{"inputs":["main","{3b459e11-74e1-4b82-88ad-28459dfe2fe1}"]}

New inputs can be created based on existing inputs with a post request to the inputs endpoint. The

argument is a JSON document with the following fields:

Input Name of the original input

type Type of processing to apply

The result is a JSON document that provides the name of the new input. Available types are:

average Average of a series of samples

maxhold Maximum of a series of samples

minhold Minimum of a series of samples

maxfall Falling maximum of a series of samples

histogram Histogram of samples

waterfall Time compressed samples

 Original samples

Each input does also provide a set of configuration parameters. The input endpoint together with the

input parameter can be used to query the current settings (see configuration data).

Raw Data Format
High data rates of e.g. raw IQ data cannot be achieved using JSON formatted arrays (at least not in a

compute efficient way). The combined raw format transmits alternating pairs of JSON meta data and

binary sample data as 16bit signed integers, 16bit floats or 32bit floats. The binary part starts behind the

record separator character. The “samples” element of the JSON meta data contains the number of

samples (e.g. spectra or IQ pairs). This format is not available for e.g. structured data.

The float data is requested using the “float16” or “float32” format and the integer data using the “int16”

format. A scale value is provided in the JSON metadata section to convert from the integer format to

float values. An additional scale parameter can be used to scale the integer data into a meaningful

numeric range: http://localhost:54664/stream?format=int16&scale=1000000

The RTSA HTTP server block will start dropping data when the outbound TCP buffer exceeds 8 Mbytes. A

loss of data can be determined by comparing the timestamps of two adjacent data packets.

The float16 format follows the IEEE 754-2008 specification for half precision with five exponent and ten

mantissa bits.

Posting Data
Data to be transmitted can be sent to the HTTP block using the POST method. The sample format is

similar to that of the received packets. With some additional fields such as “format” and “scale” which

are provided ad parameters for the get request.

http://localhost:54664/stream?format=int16&scale=1000000

startTime Start time of the packet in seconds since the start
of the unix epoch.

endTime End time of the packet in seconds since the start
of the unix epoch.

unit Unit of the sample values

payload Payload type of the packet

minPower Minimum power in dBm

maxPower Maximum power in dBm

startFrequency Start of a frequency range

endFrequency End of a frequency range

samples Array of actual sample data or number of samples
in binary mode

scale Scale factor used for integer data when using a
16bit mixed JSON raw format

format Format of sample data, either “json” for
embedded data or one of “float16”, “float32” or
“int” for binary data

end Bool end of stream

push Force push of data through graph, results in
immediate processing but may lead to
discontinuities

The data is pushed into the graph by the Stream output connector of the HTTP block.

When sending data to the Tx port of a transmitter, it is important to keep the target time some 100ms in

the future to allow for network and processing delays.

Control Endpoint
Depending on its functionality each configuration block of the Aaronia-RTSA-Suite accepts control

commands for example the start/stop command. These commands are not addressed to a specific RTSA

block and will be processed from all RTSA blocks in the block graph configuration.

Following control HTTP PUT request(http://localhost:54664/control) will start all streaming related

blocks at the remote configuration site. To stop the streaming the value of start needs to be set to false:

{

 "start" : true,

 "type" : "streaming"

}\n'

Sending a put request is problematic using a web browser, but can be done using e.g. “curl” as a

command line tool.

curl -X PUT -d "{\"start\":false, \"type\":\"streaming\"}"
http://localhost:54664/control

To set the frequency range of the measurement devices, following fields are used:

{

 "frequencyCenter" : 1200000000,

 "frequencySpan" : 44000000,

 "frequencyBins" : 448,

 "referenceLevel" : -20,

 "type" : "capture"

}\n'

Using curl:

curl -X PUT -d "{\"frequencyCenter\":1920.0e6, \"frequencySpan\":200.0e6,
\"type\":\"capture\"}" http://localhost:54664/control

An alternative way would be to specify the start and end frequency.

{

 "frequencyStart" : 75.0e6,

 "frequencyEnd" : 6000.0e6,

 "type" : "capture"

}\n'

To start or stop the autorotation of all antennas in the remote block graph configuration, following fields

are used:

{

 "rotate" : true,

 "type" : "antenna"

}\n'

To start a record, following fields are used:

{

 "start" : true,

 "filename" : “xy”

 "type" : "recording"

}\n'

http://localhost:54664/control
http://localhost:54664/control

To save or reload the running mission, following fields are used:

{

 "save" : true,

 "type" : "mission"

}\n'

{

 "reload" : true,

 "type" : "mission"

}\n'

Configuration Data

Server Info
The “/info” endpoint provides information of the http server block, such as name, title, port, features

and the name and path of the mission http://localhost:54664/info.

{

 "name" : "Block_HTTPServer_0",

 "title" : "HTTP Server",

 "uuid" : "aaf2a8f7-11fa-45a3-bcfc-26aaf5957629",

 "port" : 54664,

 "mission" : ""

}

General
All configuration items visible in the configuration blocks of the Aaronia-RTSA-Suite have a

representation as JSON. The list of available configuration items can be queried with the

“/remoteconfig” endpoint http://localhost:54664/remoteconfig.

The resulting JSON looks like this.

{

 "request": 0,

 "config": {

 "type" : "group",

 "name" : "remoteconfig",

 "label": "RemoteConfig",

 "items": [{

 "type" : "group",

 "name" : "Block_FileReader_0",

 "label": "File Reader",

…

The configuration data forms a tree with the root being placed into the config member of the top-level

object. The second tree level is populated with the blocks of the graph, all further levels by configuration

elements of these blocks.

All config items share the following fields:

type The type of the config element

http://localhost:54664/info
http://localhost:54664/remoteconfig

name The machine-readable name of the element

label The human readable name of the element

Leaf nodes carry configuration data, internal nodes have the type “group” and contain their child nodes

in a member named “items”. Leaf nodes provide their current value in the member “value” and the

default value in the member “default”.

Leaf Node Metadata
The following members can be found in leaf nodes and provide meta data.

min Minimum allowed value

max Maximum allowed value

step Distance between two valid values

unit Unit represented by numeric values (e.g. time)

pattern File name pattern (glob)

values Comma separated list of names of an
enumeration type

flags Additional flags

Set Configuration Data
All configuration items visible and editable in a configuration block of the Aaronia-RTSA-Suite can be

changed via the “/remoteconfig” endpoint and a HTTP PUT request. Each configuration block has a

unique name in a Aaronia-RTSA-Suite mission. This name is used to address a specific RTSA block. The

unique name for each RTSA block is provided in the response of the “/remoteconfig” HTTP GET request

and is static in an unchanged mission. Each “/remoteconfig” HTTP PUT request will be answered with the

same response a HTTP GET request will initiate.

A JSON “/remoteconfig” HTTP PUT request starts with the following fields:

{

 "request" : 0,

 "config" : {

 "type" : "group",

 "name" : "Block_Spectran_0",

 "items" : [{

…

request Incrementing request number

name Unique Name of a specific RTSA block to be
addressed

items Contains the leaf nodes of the configuration items
which will be changed in the addressed RTSA
block

A HTTP PUT request to enable the amplifier of a Spectran V5 RTSA block for example, looks like the

following:

{

 "request" : 1,

 "config" : {

 "type" : "group",

 "name" : "Block_Spectran_0",

 "items" : [{

 "type" : "group",

 "name" : "main",

 "label" : "Main",

 "items" : [{

 "type" : "bool",

 "name" : "amplifier",

 "value" : true

 }]

 }]

 }

}

Status Endpoint
Depending on the functionality of a configuration block in the Aaronia-RTSA-Suite, a block can report its

health status at the “/healthstatus” endpoint http://localhost:54664/healthstatus in JSON format. The

health status contains the current state of the configuration blocks together with its latest error.

Depending on the capabilities of the block additional information is provided, like temperature values or

performance statistics.

The format of the health status is composed of the same config items as the configuration data format.

It consists of one main group item, named “healthstatus” with one child group item per health aware

block. Each one of these block health groups consists of up to five subgroups

Info General Info about the block, such as name, type
or UUID

status Status Information, e.g. temperature, samples
processed

health Health status

settings Unit specific settings

components Recursive list of sub blocks when using a system
with HTTP block connected satellites

The info group contains as least the following items:

date Last update of the health status in seconds since
the epoch

name Internal name of the block

category Category name of the block

title User facing title of the block

description User facing description of the block

uuid Global unique identifier of the block

http://localhost:54664/healthstatus

The health status group contains at least two members:

state One of the following states: unknown, idle,
booting, ready, starting, operational, running,
warning, critical

error User facing string describing the error

User Endpoint
The “/user “ endpoint provides information regarding the current user of the endpoint, such as name,

email, position or the alternative authorization token.

name Name of the current user

email Email address of the current user if available

token Authorization token to be used with the
alternative “RToken” http authorization method

groups Array of group names, this user is a member of

The “/userinfo” endpoint provides additional user information such as position or status. It supports the

GET and PUT methods. The PUT update changes the user information for the current user.

name Name of the user

latitude Latitude of the user location

longitude Longitude of the user location

altitude Altitude of the user location

status Status text of the user

updated Date/Time of last update of this information

Performance Considerations
While it is unlikely to achieve the full 250M samples of IQ data using pure JSON or a gigabit network card,

it is a simple matter of a fast parser to get the full rate using a loopback connection and an appropriate

programming language. TCP loopback on windows can be improved by using the TCP Loopback Fast Path

(enabled by SIO_LOOPBACK_FAST_PATH).

	Features and Purpose
	Block Graph
	Authorization
	Stream Format
	Spectrum Data
	IQ Data
	Histogram Data
	Channel power or other category data
	Antenna Data

	Data Endpoints
	Single Samples
	Stream Data
	Alternative Inputs
	Raw Data Format
	Posting Data

	Control Endpoint
	Configuration Data
	Server Info
	General
	Leaf Node Metadata
	Set Configuration Data

	Status Endpoint
	User Endpoint
	Performance Considerations

